Search results for "achievement scalarising function"

showing 1 items of 1 documents

An interactive surrogate-based method for computationally expensive multiobjective optimisation

2019

Many disciplines involve computationally expensive multiobjective optimisation problems. Surrogate-based methods are commonly used in the literature to alleviate the computational cost. In this paper, we develop an interactive surrogate-based method called SURROGATE-ASF to solve computationally expensive multiobjective optimisation problems. This method employs preference information of a decision-maker. Numerical results demonstrate that SURROGATE-ASF efficiently provides preferred solutions for a decision-maker. It can handle different types of problems involving for example multimodal objective functions and nonconvex and/or disconnected Pareto frontiers. peerReviewed

black-box functionsMathematicsofComputing_NUMERICALANALYSISmetamodeling techniquesachievement scalarising functioninteractive methodsmatemaattinen optimointimultiple criteria decision-making (MCDM)computational costmonitavoiteoptimointi
researchProduct